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Abstract

Human homologue of yeast UV excision repair protein Rad23b (HR23B) inclusions are found in a number of
neurodegenerative diseases, including frontotemporal dementia (FTD), Huntington’s disease (HD), spinocerebellar
ataxia type 3 and 7 (SCA3/7), fragile X associated tremor/ataxia syndrome (FXTAS) and Parkinson’s disease (PD).
Here, we describe HR23B pathology in C9ORF72 linked FTD and amyotrophic lateral sclerosis (ALS) cases. HR23B
presented in neuropils, intranuclear inclusions and cytoplasmic and perinuclear inclusions and was predominantly
found in cortices (frontal, temporal and motor), spinal cord and hippocampal dentate gyrus. HR23B co-localized
with poly-GA-, pTDP-43- and p62-positive inclusions in frontal cortex and in hippocampal dentate gyrus, the latter
showing higher co-localization percentages. HR23B binding partners XPC, 20S and ataxin-3, which are involved in
nucleotide excision repair (NER) and the ubiquitin-proteasome system (UPS), did not show an aberrant distribution.
However, C9ORF72 fibroblasts were more sensitive for UV-C damage than healthy control fibroblasts, even though
all factors involved in NER localized normally to DNA damage and the efficiency of DNA repair was not reduced.
HR23Bs other binding partner NGly1/PNGase, involved in ER-associated degradation (ERAD) of misfolded proteins,
was not expressed in the majority of neurons in C9FTD/ALS brain sections compared to non-demented controls.
Our results suggest a difference in HR23B aggregation and co-localization pattern with DPRs, pTDP-43 and p62
between different brain areas from C9FTD/ALS cases. We hypothesize that HR23B may play a role in C9ORF72
pathogenesis, possibly by aberrant ERAD functioning.
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Introduction
The hexanucleotide (G4C2) repeat expansion in the
chromosome 9 open reading frame 72 (C9ORF72) gene
is the most common genetic cause of FTD and ALS [12,
33]. FTD is characterized by the degeneration of the
frontal and temporal parts of the brain, leading to abnor-
malities in behavior, language and personality [49]. ALS
affects motor neurons in the brain and spinal cord, lead-
ing to loss of motor function, muscle weakness, breath-
ing problems and eventually paralysis [52]. Clinical,

pathological and genetic factors connect FTD and ALS,
and in families often patients present with symptoms of
both disorders [4]. The discovery of the C9ORF72 hexa-
nucleotide repeat expansion confirmed the genetic over-
lap between FTD and ALS, collectively referred to as
C9FTD/ALS. Pathologically, both diseases present with
inclusions of autophagy protein p62/sequestosome 1
(p62) and inclusions of phosphorylated 43 kDa TAR
DNA-binding protein (pTDP-43), of which the latter is
predominantly found in areas that are known to display
substantial neurodegeneration [24, 44].
The possible pathological mechanisms by which the

C9ORF72 repeat expansion can lead to FTD and ALS
are: 1) hypermethylation of the repeat expansion and the
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CpG promoter region of the C9ORF72 gene leading to
haploinsufficiency [5, 43], 2) retention of repeat containing
intron 1 in mRNAs causing RNA foci to appear in both
nucleus and cytoplasm that sequester RNA-binding pro-
teins [11, 27] or 3) the production of dipeptide repeats
(DPR) by unconventional repeat-associated non-AUG
(RAN) translation of the repeat [2, 18, 31]. These DPRs
are produced from both sense and antisense transcripts
resulting in 5 possibly toxic peptides (poly-GA, −GP, −GR,
−PR and -PA) and are found as inclusions in post-mortem
brain material of C9ORF72 carriers [28, 38].
How these three mechanisms – alone or in combin-

ation – cause neurodegeneration is currently under in-
vestigation. Several studies have indicated that especially
the DPRs are toxic in both cell culture and in vivo
models, with the arginine-containing poly-GR and -PR
DPRs being the most detrimental [3, 30, 47]. And
poly-GR has been associated with neurodegeneration in
human post-mortem brain sections [35, 36]. DPRs seem
to cause various types of stress to the cell, including
ER-stress, mitochondrial stress and nucleolar stress [3].
They can disturb the formation of membrane-less organ-
elles, including RNA granules, nucleoli, spliceosomes
and the nuclear pore complex (NPC) and facilitate the
formation of stress granules [26]. Furthermore, nucleo-
cytoplasmic transport and autophagy defects have been
reported [40, 53, 56]. In addition to the list of disturbed
pathways found in model systems of C9FTD/ALS, there
have also been a substantial number of proteins found
to interact, bind or aggregate with repeat-containing
RNA or DPRs [21, 48]. Currently, the primary affected
pathways involved in the pathogeneses of C9FTD/ALS
are under debate [3, 17, 19]. Constituents of inclusions
in human C9FTD/ALS brain material might provide a
tool to identify key players in neurodegeneration.
Here, we tested a set of proteins implicated in aberrant

pathways in C9ORF72 disease models for their presence in
pathology or abnormal localization in post-mortem human
C9FTD/ALS brain sections. We selected Ran-GAP for its
implication in nucleocytoplasmic transport defects [54],
ADARB2 for its role in RNA binding and editing [13] and
HR23B for its dual function in both DNA repair and the
UPS [51]. FMRP and Pur-alpha were selected for their
binding to C9ORF72 mRNA, their localization in stress
granules and their rescue effect in multiple C9ORF72
models [34]. Surprisingly, we found only HR23B protein to
be a constituent of inclusions observed in C9FTD/ALS
cases. In this report, we describe HR23B distribution and
its co-localization with known C9ORF72 pathological hall-
marks (DPRs, p62 and pTDP-43). Furthermore, we analyze
HR23B function in DNA damage repair, the
ubiquitin-proteasome system and ER-associated degrad-
ation. Disturbances of these pathways may contribute to
the disease onset and/or progression of C9FTD/ALS.

Materials and methods
Five C9ORF72 FTD, two GRN FTD, two MAPT FTD,
three sporadic ALS and three non-demented control hu-
man brain sections were provided by the Dutch Brain
Bank. C9ORF72 ALS brain material of two patients was
collected post-mortem at the department of Neuropath-
ology of Amsterdam UMC, University of Amsterdam,
according to local legal and ethical regulations. Patients
or relatives gave informed consent for autopsy and use
of brain tissue for research purposes. Information about
our patient cohort can be found in Table 1. Human fi-
broblasts lines were provided by the cell repository of
the department of clinical genetics. All participants gave
written informed consent for all obtained materials. The
study was approved by the Medical and Ethical Review
Committee of the Erasmus Medical Center. All proce-
dures performed in studies involving human participants
were in accordance with the ethical standards of the in-
stitutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments
or comparable ethical standards.

Immunohistochemistry on human brain sections
Human brain sections (6 μm) were deparaffinized in xy-
lene and rehydrated (100%–96%-90%–80%-70%–50%
EtOH serie). Antigen retrieval was done in 0.01M so-
dium citrate, pH 6.0 using pressure cooker treatment.
Endogenous peroxidase activity was blocked with 0.6%
H2O2 and 1,25% sodium azide in 0.1 M PBS. Immuno-
staining was performed overnight at 4 °C in PSB block
buffer (0.1 M PBS/0.5%protifar/0.15%glycine). Antibodies
used in this study are listed in Additional file 1: Table
S3, including concentration and brand/catalogue num-
ber. Antigen-antibody complexes were visualized by in-
cubation with DAB substrate (DAKO) after incubation
with Brightvision poly-HRP-linker (Immunologic) or
anti-mouse/rabbit HRP (DAKO). Slides were counter-
stained with Mayer’s haematoxylin and mounted with
Entellan (Merck Millipore International). The slides
were then left to dry in the fume hood for an hour and
thereafter put in an 37 °C incubater overnight. Pictures
were taken by using an Olympus BX40 microscope
(Olympus).

Immunofluorescence staining on human brain sections
Human brain sections were treated as described above.
After incubation with the primary antibody, sections
were washed with PBS block buffer (1xPBS/0.5%protifar/
0.15%glycine) and incubated with secondary anti-mouse/
rabbit Cy2/3 linked antibodies (Jackson). To remove
background staining, a 10 min incubation with Sudan
Black (Sigma, 0.1 g in 100ml 70% ethanol, filtered) was
done. To visualize nuclei, slides were incubated for 10
min with Hoechst 33342(Invitrogen). Slides were
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mounted with ProLongGold (Invitrogen) and kept at 4 °
C until imaging at a Zeiss LSM700 Confocal
microscope.

Assessment of neurodegeneration and protein pathology
For the neuropathological assessment we used brain sec-
tions from 5 C9ORF72 FTD cases (see Table 1). Five dif-
ferent brain regions (frontal cortex, temporal cortex,
motor cortex, hippocampus and cerebellum) per patient
were semi-quantified on neurodegeneration and patho-
logical score of p62, pTDP-43 and HR23B (Add-
itional file 2: Table S1). Counting was not performed in
a blinded fashion. Neurodegeneration was assessed on
haematoxylin and eosin (HE) sections and graded as ab-
sent (0), mild (1), moderate (2) or severe (3) based on
the presence of neuronal loss. The neurodegenerative
score from the pathological report was also taken into
account. Pathological scores were rated as (0) if com-
pletely absent, rare (1) if only a few could be found one
brain section, occasional (2) if they not present in every
microscopic field, moderate (3) if at least a few examples
were present in most microscopic fields, and numerous
(4) when many were present in every microscopic field
[28]. We reported the overall number of immunoreactive
inclusions (total score) as well as the number of neur-
onal cytoplasmic inclusions (NCI), neuronal intranuclear
inclusions (NII) and dystrophic neurites (DN) (Add-
itional file 2: Table S1). Total scores were assessed inde-
pendent from NCI, NII and DN scores and represent an
impression of the global load of pathology and the

number of inclusions using the same grading system as
described above. Quantification of co-localization of
HR23B with DPRs, p62 and pTDP-43 was not per-
formed in a blinded fashion.

Colony forming assays
Human fibroblast lines from 4 C9ORF72 carriers
(13E634, 13E659, 17E0225, 17E0278) and 4 controls
(81E253, 86E1375, 06E0717 and 99E0774) were obtained
from the cell repository of the department of clinical
genetics and the XP25RO fibroblast line was provided
by the department of molecular genetics. Fibroblasts
were cultured in DMEM medium (Gibco) with 10% fetal
calf serum, 1% penicillin/streptavidin and 1%
non-essential amino acids. To determine UV-sensitivity,
human fibroblasts were seeded in triplicate in 10 cm
plates (Greiner Bio-one) in a density of 2000 cells/
plate. After 24 h, cells were treated with increasing
doses of UV-C (254 nm UV-C lamp, Philips). After 5–
7 days, colonies were fixed with 0.1% w/v Coomassie
Blue (Bio-Rad) in a 50% Methanol, 10% Acetic Acid
solution. Colonies were counted with the integrated
colony counter GelCount (Oxford Optronix). Count-
ing was performed automatically with the same set-
tings for each fibroblast cell line, but not in a blinded
fashion.

Immunofluorescence on human fibroblasts
To determine DNA damage recruitment of NER pro-
teins, human fibroblasts were seeded on coverslips and

Table 1 Patient characteristics

Patient Clinical diagnosis Family history Genetic diagnosis Age of onset Disease duration Male/ Female Brain weight

1 bvFTD FTD C9ORF72 51,8 8,7 Male 960 g

2 bvFTD FTD C9ORF72 55,8 9,1 Male 1184 g

3 bvFTD FTD and ALS C9ORF72 66,4 8,1 Female 1060 g

4 bvFTD ALS and dementia C9ORF72 63,2 6,8 Female 958 g

5 bvFTD FTD and ALS C9ORF72 55,2 9,5 Male 1075 g

6 FTD N/A Progranulin (Gln200X) 60,6 5,5 Female 894 g

7 FTD FTD Progranulin (Ser82ValfsX174) 47,4 4,3 Female unknown

8 FTD FTD MAPT (G272 V) 42,6 8,4 Male 962 g

9 FTD FTD MAPT (P301L) 51,1 9,7 Male 887 g

10 ALS N/A unknown 70 1 Male 1428 g

11 ALS N/A unknown 65 2,2 Female 1125 g

12 ALS N/A unknown 75 1,1 Male 1255 g

13 ALS N/A C9ORF72 60 4,4 Female 1390 g

14 ALS N/A C9ORF72 66 3,5 Male 1275 g

15 ALS N/A C9ORF72 71 2,4 Female 1080 g

16 Non-demented N/A unknown N/A N/A Female 1080 g

17 Non-demented N/A unknown N/A N/A Male 1215 g

18 Non-demented N/A unknown N/A N/A Female 1139 g
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after 1 week in culture irradiated with 60 J/m2 (254 nm
UVC lamp, Philips) through an 8 μm microporous filter
(Millipore) to induce sub-nuclear local DNA damage.
Cells were fixed after 30 min with 2% paraformaldehyde
and permeabilized with 0.1% Triton X-100 for 20 min.
Next, cells were incubated with fresh 0.07M NaOH in
PBS for 5 min to denature DNA and enable CPD stain-
ing. Cells were then washed with PBS containing 0.15%
glycine and 0.5% BSA and incubated with primary anti-
bodies (see Additional file 1: Table S3) overnight at 4 °C.
The next day, cells were washed with 0.1% Triton X-100
and incubated with Alexa Fluor conjugated secondary
antibodies (488, 555 and 633; Invitrogen) for 1 h at RT.
Coverslips were mounted using ProLongGold with DAPI
(Invitrogen) and imaged using a Zeiss LSM700
microscope.

Unscheduled DNA synthesis (UDS)
To measure NER capacity, human fibroblasts were
grown on coverslips for 1 week in culture and irradi-
ated with 16 J/m2 UV-C. After irradiation, cells were
incubated for 1 h in UDS medium (F10, 1% PS, 10%
dialyzed serum) with 2% HEPES and 1%
5-ethynyl-2′-deoxyuridine (EdU, Invitrogen). After 1 h,
medium was changed to normal DMEM medium
(10% FCS, 1% NEAA, 1% PS) for 10 min. Next, cells
were fixed in 4% paraformaldehyde and permeabilized
with 0.1% Triton X-100. Blocking was done using
1.5% BSA in PBS for 30 min. EdU incorporation was
visualized by incubating cells for 1 h at room
temperature with Click-it reaction cocktail containing
Atto 594 Azide (60 μM, Atto Tec.), Tris-HCl (50 mM,
pH 7.6), CuSO4*5H2O (4 mM, Sigma) and ascorbic
acid (10 mM, Sigma). After the Click-it reaction, cells
were washed with 0.1% Triton X-100, incubated with
Hoechst 33342 (Invitrogen) for 10 min and mounted
with ProLongGold (Invitrogen). Images were acquired
using a Zeiss LSM700 microscope. UDS levels were
quantified by measuring the total nuclear fluorescence
intensities (in at least 50 cells per experiment) with
FIJI image analysis software. Intensity levels were av-
eraged and normalized to the fluorescence levels in
unirradiated cells. Quantification of intensity levels
was done automatically with FIJI but was not per-
formed in a blinded fashion.

Results
Characterizing Ran-GAP, ADARB2, HR23B, FMRP and Pur-
alpha in a cohort of C9FTD patients and non-demented
controls
We started with assessing the localization of ras-related nu-
clear protein GTPase activating protein (Ran-GAP) in
C9FTD patient brain sections. We studied five FTLD-TDP
cases with the C9ORF72 repeat expansion and three

non-demented cases (for information about our cohort, see
Table 1). We predominantly found a diffuse nuclear stain-
ing or nuclear envelop staining of Ran-GAP. Most nuclei
were round-shaped but occasionally we observed misfolded
nuclei or the invagination of the nuclear membrane (Add-
itional file 3: Figure S1). The number of oddly-shaped nu-
clei did not clearly differ between C9FTD cases and
non-demented controls. Next, we investigated Adenosine
Deaminase, RNA Specific B2 (ADARB2) localization.
ADARB2 immunostaining showed both nuclear and cyto-
plasmic localization in both C9FTD and non-demented
controls. We could detect some intranuclear inclusions in
the hippocampus dentate gyrus of C9FTD patients (Add-
itional file 4: Figure S2A). However, IF double staining of
ADARB2 with p62 showed similar results between hippo-
campal nuclei of C9FTD patients and non-demented cases
(Additional file 4: Figure S2B).
Next, we stained for HR23B and found different types

of inclusions in cortical areas, hippocampus and cerebel-
lum of C9FTD cases (Fig. 1 and Additional file 5: Figure
S5). Most cytoplasmic inclusions showed a round and
perinuclear appearance (Fig. 1a and c), while some inclu-
sions had a negative central core surrounded by a posi-
tive halo labeling (Fig. 1e). Neuropils were mostly found
in layer 2 of cortical areas (Fig. 1a). Intranuclear inclu-
sions were also observed, including cat-eye inclusions
(Fig. 1b). Overall, layer 2/3 and layer 5/6 of frontal and
temporal cortices showed the highest HR23B patho-
logical burden in C9FTD cases, followed by motor cor-
tex, hippocampus and cerebellum (Fig. 1g and
Additional file 2: Table S1). Hippocampus dentate gyrus
(DG) harbored some perinuclear inclusions and hippo-
campus cornu ammonis (CA) showed some cells with
strong nuclear staining (Additional file 5: Figure S5). Cere-
bellum showed low HR23B staining with some nuclear
and perinuclear inclusions in the granular layer and nearly
absent in the molecular layer (Additional file 5: Figure S5).
Non-demented controls showed normal nuclear
localization of HR23B (Additional file 5: Figure S5).
Furthermore, we assessed fragile X mental retardation

protein (FMRP) localization in C9FTD cases. Punctuated
FMRP staining in the cytoplasm indicative of the forma-
tion of stress granules was absent in our C9FTD cases
(Additional file 6: Figure S3). FMRP was evenly distributed
in the cytoplasm in both C9FTD cases and controls. Very
occasionally, we could detect inclusions in the hippo-
campus dentate gyrus in both C9FTD cases and con-
trols (Additional file 6: Figure S3). Finally, we set out
to test Pur-alpha staining, which showed to be lo-
cated in stress granules in both C9FTD cases and
controls (Additional file 7: Figure S4). We did not
find Pur-alpha intranuclear inclusions in the cerebel-
lum or other brain areas of C9FTD cases nor controls
(Additional file 7: Figure S4).
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HR23B pathology is also present in C9ALS and GRN FTD
post-mortem brain tissue
In order to validate the observed HR23B pathology, we
used a second independent HR23B antibody (for details
see methods) that revealed similar results (Additional file 8:
Figure S6). Furthermore, we expanded our cohort with
three ALS cases with the C9ORF72 repeat expansion,
three sporadic ALS cases with unknown genetic cause,
two FTD with GRN mutation and two FTD-MAPT cases.
In non-demented controls, we observed immunoreactivity
for HR23B in nuclei (Additional file 5: Figure S5 and Add-
itional file 8: Figure S6). C9ALS cases showed very strong
HR23B staining in nuclei and some cytoplasmic inclusions
in motor cortex (Fig. 2a) and spinal cord sections (Fig.
2b). Sporadic ALS cases also showed very strong nuclear
HR23B staining but no pathology in motor cortex (Fig. 2c)
nor spinal cord (Fig. 2d). GRN FTD cases showed the
same extend of HR23B pathology as C9FTD in frontal
cortex, consisting of some intranuclear inclusions, cyto-
plasmic inclusions and neuropils (Fig. 2e). HR23B path-
ology was absent in MAPT FTD cases (Fig. 2f).

HR23B co-localizes with poly-GA, pTDP-43 and p62 in
C9FTD cases
To evaluate HR23B’s aggregation process in C9FTD, we
performed double labeling with known pathological

hallmarks, including DPRs, pTDP-43 and p62 in five
C9FTD frontal cortices (Fig. 3). HR23B was mostly
found to be co-localized with p62 (Fig. 3), as 66% of all
HR23B inclusions were also positive for p62 (Add-
itional file 9: Table S2). Next is pTDP-43 with 22.6% of
HR23B inclusions being positive for pTDP-43 (Fig. 3
and Additional file 9: Table S2). From all DPRs, HR23B
showed partial co-localization with poly-GA (Fig. 3), for
6.6% (Additional file 9: Table S2). The other DPRs only
co-stained with 0–3% of all HR23B inclusions. We did
not evaluate poly-PA because we found too few inclu-
sions. Interestingly, hippocampus dentate gyrus showed
a much higher co-localization between DPRs and
HR23B than frontal cortex (Fig. 4 and Additional file 9:
Table S2). We found 60.6% of HR23B inclusions being
positive for poly-GA in the dentate gyrus, which is
nearly a 10-fold increase compared to the frontal cortex
(Fig. 4 and Additional file 9: Table S2). Poly-GP in-
creased from 0.8% in frontal cortex to 4.7% in hippo-
campus and poly-GR also showed a 10-fold increase
from 1% in frontal cortex to 10.5% in hippocampus (Fig.
4 and Additional file 9: Table S2). Only poly-PR stayed
fairly undetectable with a slight increase from 0.65% in
frontal cortex to almost 1% in hippocampus. HR23B
co-localization with p62 in dentate gyrus was also higher
in hippocampus than in frontal cortex (87.4% vs 66%)

A B C G

D E F

Fig. 1 Type and spreading of HR23B pathology found in C9FTD cases. Different types of HR23B pathology in C9FTD cases: a) neuropils and
puncta in frontal cortex layer 2. b) intranuclear (cat eye) inclusion in hippocampus dentate gyrus. c) perinuclear inclusion in hippocampus dentate
gyrus. d) round intranuclear inclusion in hippocampus dentate gyrus. e) round or oval inclusion with a hole in frontal cortex f) dystrophic neuron
in cerebellum molecular layer. g) Spreading of HR23B compared to known p62 and pTDP-43 pathology. Depicted are semi-quantitive measures
of neurodegeneration and pathological score in C9FTD. Neuronal loss score was based on hematoxylin and eosin (HE) staining and pathological
report and scored as absent (0), mild (1), moderate (2) or severe (3). Pathological scores were based on the degree of pathology as absent (0),
rare (1), occasional (2), moderate (3), or numerous (4). See also Additional file 9: Table S2 for details of pathological quantifications. All scale bars
are 20μm
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(Fig. 4 and Additional file 9: Table S2). We performed a
2-way ANOVA to compare co-localization percentages of
HR23B with pathological hallmarks between different
brain areas (p < 0.0001). Post Bonferroni test indicated
that percentages of poly-GA and p62 were significantly
different between hippocampus DG and frontal cortex
(Fig. 4 and Additional file 9: Table S2). For the other DPRs
and pTDP-43, differences were not significant (Fig. 4 and
Additional file 9: Table S2). These data suggest a differ-
ence in aggregation formation and co-localization patterns
between different brain areas or cell types.

Nucleotide excision repair is not affected in C9ORF72
patient fibroblasts
To assess any changes in the normal cellular function of
HR23B, we first focused on its role in DNA damage repair.
HR23B interacts with and stabilizes Xeroderma pigmento-
sum, complementation group C (XPC) protein [32], which
is involved in the recognition of bulky DNA adducts in
global genome nucleotide excision repair (GG-NER).
Staining with XPC antibody did not reveal any gross dif-
ferences between C9FTD and non-demented control
post-mortem brain sections (Fig. 5). To assess nucleotide
excision repair capacity in living cells, we performed
UV-sensitivity assays with four C9ORF72 patient fibro-
blast lines and compared these to four healthy control
fibroblast lines. Intriguingly, C9ORF72 fibroblasts were
more sensitive to UV-C damage than healthy control fi-
broblasts (Additional file 10: Figure S7A), but not as

sensitive as a fibroblast line that is fully deficient in NER
(XP25RO, homozygous for 619C > Tcausing an ARG207X
change in exon 5 of the XPA gene). The GG-NER pathway
is initiated by recognition of DNA damage by the HR23B/
XPC/CETN2 complex, which is then followed by multiple
downstream steps to verify and excise the damage [29].
We therefore assessed whether factors involved in each of
the steps of the NER pathway were recruited normally to
DNA damage in C9ORF72 fibroblasts. To do so, we
evoked local DNA damage by UV-C irradiation through a
microporous filter in our fibroblast lines and performed
immunofluorescence to visualize DNA damage (by cyclo-
butane pyrimidine dimers (CPD) antibody) and DNA
damage recruitment of NER factors XPC, XPB, XPA, XPF
and XPG. All tested NER proteins clearly co-localized
with DNA damage in C9ORF72 patient fibroblasts, indi-
cating that recognition and processing of CPDs is still
functional in these cells (Additional file 10: Figure S7B).
To finally verify that NER is fully operational, we mea-
sured incorporation of the thymidine analogue
5-ethynyl-2-deoxiuridine (EdU) after UV-C irradiation to
quantify the efficiency of DNA repair in our fibroblast
lines. The NER-deficient XP25RO cell line, which we used
as negative control, did not show any EdU incorporation.
In contrast, we still observed efficient EdU incorporation
in our four C9ORF72 patients cell lines to similar levels as
in four healthy control lines (Additional file 10: Figure
S7C), indicating that NER is not deficient in C9ORF72 pa-
tient fibroblasts.

A B C

D E F

Fig. 2 HR23B pathology is also present in C9ALS and GRN FTD cases. a) HR23B staining in C9ALS motor cortex shows strong staining in the
nucleus and a cytoplasmic inclusion. b) C9ALS spinal cord section with cytoplasmic HR23B pathology c) Sporadic ALS with very strong nuclear
HR23B staining in motor cortex d) and in spinal cord. e) GRN FTD case with an intranuclear inclusion and neurites positive for HR23B in frontal
cortex. f) HR23B pathology is absent in frontal cortex of MAPT FTD. All scale bars are 20 μm
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NGly1, ERAD factor and HR23B binding partner, is less
abundant in C9FTD brain sections
Besides its role in DNA damage repair, HR23B is also
known for its function in the ubiquitin-proteasome sys-
tem. Various HR23B binding partners have been identi-
fied which are involved in the unfolded protein response
(UPR), transcriptional regulation, cell cycle control and
ER-associated degradation (ERAD) [51]. To assess if
HR23B aggregation also evokes changes in the
localization of the proteasome, we stained our sections
for proteasome subunit 20S. However, we did not ob-
serve any obvious changes in 20S normal localization

(Fig. 5). Another binding partner of HR23B is ataxin-3, a
deubiquitinase enzyme in which a poly-glutamine expan-
sion is linked to SCA3 [46]. HR23B-positive inclusions
have been found in post-mortem brain material of SCA3
patients [6] however we could not detect ataxin-3 path-
ology in C9FTD cases (Fig. 5). Besides the proteasome,
we wondered if we could find any changes in ERAD.
HR23B did not sequester NGly1, one of its known bind-
ing partners involved in ERAD, into protein inclusions.
Strikingly, however, we did observe clearance of NGly1
staining in C9FTD frontal cortex (Fig. 5). Although some
neurons showed the same strong peri-nuclear staining as

Fig. 3 HR23B co-localizes with p62, TDP-43 and poly-GA in C9FTD cases. Immunofluorescent staining for HR23B (shown in red) in combination
with DPRs (poly-GA, −GP, −GR and -PR) or p62 or pTDP-43 (shown in green). Poly-PA was not evaluated because too few inclusions were found.
All pictures are from frontal cortex of C9FTD cases. All scale bars are 10 μm
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almost all non-demented control cells, in the majority of
patient neurons no NGly1 staining was observed, indi-
cating reduced expression of NGly1 in C9FTD brains.
This may suggest a partial loss of function of ERAD in a
subset of neurons in the brain of C9FTD patients.

Discussion
In the present study, we characterize HR23B pathology
distribution and its co-localization pattern with patho-
logical hallmarks. To our knowledge, we are the first to
show that HR23B co-localizes with pTDP-43 pathology
in brain tissue of C9FTD patients. We could also dem-
onstrate HR23B pathology in C9ALS and sporadic ALS.
HR23B pathology has been described before in HD,
SCA3, SCA7, FXTAS and PD [6]. HR23B pathology was
also present in both C9ORF72 and GRN FTD cases, but
not in MAPT FTD cases, in contrast to a previous report
of HR23B pathology described for FTDP-17 (FTD with
parkinsonism with Pick bodies consisting of tau protein)
[6]. Also Alzheimer’s disease (AD) brain material did not
show HR23B pathology [6]. Why AD and some
FTLD-tau patients are an exception and do not present
with HR23B pathology is unclear and requires further
investigation. It should be noted that our study cohort
was rather small (see Table 1), which might explain why
we could not confirm HR23B pathology in MAPT FTD
cases. Next to HR23B, HR23A inclusions have been re-
ported in FXTAS and in C9FTD post-mortem brain tis-
sue [6, 55]. In general, HR23 pathology seems to be
widespread among neurodegenerative diseases, which
underscores its relevance in a common disease patho-
genesis of these disorders.
In our semi-quantitative co-localization studies, we

found HR23B to be co-localized predominantly with
p62, followed by pTDP-43 and poly-GA. HR23B

inclusions were nearly always negative for the other
DPRs. Overexpression of poly-GA in mouse models is
enough to sequester HR23B [37, 55] and in a
co-immunoprecipitation experiment of lysates from cells
expressing GFP-tagged poly-GP, −GR and -GA, only
poly-GA was found to bind HR23B [55]. This could also
be a stochastic event, given the fact that poly-GA inclu-
sions are the most abundant DPR in C9FTD/ALS brains
[28]. It could also be caused by the aggregation-prone
nature of the poly-GA peptide itself [9], causing HR23B
to bind easier or faster to poly-GA peptides than other
DPRs. Binding of HR23B to DPRs also differs between
brain areas; in the frontal cortex, only 6.6% of HR23B in-
clusions were poly-GA positive, while this increased to
60.6% in the hippocampus dentate gyrus. The same is
true for poly-GP and -GR; co-localization with HR23B
increased 5- to 10-fold between frontal cortex and
hippocampus, although it remained low (1–10%). Sub-
types of neurons may differ in their vulnerability for
DPRs or there might be differences in the expression
level and availability of HR23B and/or its binding part-
ners between frontal cortex and hippocampus dentate
gyrus. Levels of HR23B can influence aggregation of
poly-GA and toxicity of mutant TDP-43 and mutant
SOD1 [23, 55]. Overexpression of HR23B protected for
the formation of poly-GA inclusions in mouse primary
neuronal cultures [55]. In contrast, loss of HR23B seems
to protect against motor neuron disease by enhancing
mutant protein clearance [23]. Levels of HR23B seem to
have opposite effects on aggregation, clearance and solu-
bility of several proteins, which could result in differ-
ences in aggregation and co-localization patterns
observed between different brain areas.
HR23B can directly bind the proteasome and ataxin-3,

a deubiquitinase enzyme that binds ubiquitinated

Fig. 4 HR23B co-localization percentages with poly-GA and p62 differ between frontal cortex and hippocampus DG. Semi-quantification of co-
localization of HR23B with pathological hallmarks such as DPRs, p62 and pTDP-43 based on raw data in Additional file 9: Table S2. Two-way
ANOVA is significant (p < 0.0001) for pathology, brain area and interaction. Bonferroni test indicates that only poly-GA and p62 are significantly
different between frontal cortex and hippocampus DG (both p < 0.001)
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proteins and can also bind to the proteasome [14, 46].
Even though HR23B and proteasome subunits are se-
questered into intranuclear inclusions of ataxin-3 in
SCA3 patients brain tissue [6, 39], ataxin-3 and 20S do
not show an aberrant localization in C9FTD patients
post-mortem brain tissue. HR23B can also bind PNGase,
a deglycosylation hydrolase involved in ERAD of mis-
folded glycoproteins. The affinity of PNGase for the pro-
teasome is HR23B-dependent, which makes HR23B
essential for the shuttling of misfolded proteins to the
proteasome [25]. If HR23B is sequestrated into

inclusions and becomes unavailable for PNGase, this
might cause loss of initiation of ERAD. This is in line
with our observation that a substantial number of neu-
rons of C9FTD/ALS patients show less abundant NGly1
staining. Many FTD-causing mutations are associated
with protein degradation pathways [20]. In addition, mu-
tations in NGLY1, the gene encoding PNGase, are linked
to motor impairment, intellectual disability, and neur-
opathy in humans [8].
HR23B is well known for its role in global genome nu-

cleotide excision repair (GG-NER) and genetic polymor-
phisms in RAD23B are modifiers of laryngeal cancer risk
in human [1]. The DNA damage response can be in-
duced by the C9ORF72 repeat expansion [15] and ele-
vated levels of R-loops (DNA-RNA hybrids), double
strand breaks and ATM-mediated DNA repair signaling
defects have been described before in rat neurons, hu-
man cells and C9ALS spinal cord tissue [15, 45]. Fur-
thermore, ALS and C9ORF72 repeat carriers have an
increased risk for melanoma [16, 42], suggesting they
may have an reduced response to DNA damage. XPC,
the binding partner of HR23B in NER, was found in in-
clusions in a poly-GA mouse model of C9FTD/ALS
[55]. Nonetheless, we could not find XPC pathology in
our human brain sections nor deficits in the NER path-
way in C9ORF72 patient fibroblasts, even though
C9ORF72 patient fibroblasts seem to be more sensitive
for UV-C damage than healthy control fibroblasts. Why
we do not find a clear impairment of NER in our study
is unknown. Species-specific factors, overexpression of
poly-GA in the mouse model or difference between fi-
broblasts and neurons might explain a part of the ab-
sence of an effect. In addition, it could be possible that
HR23A takes over the DNA repair function of HR23B
when the latter is sequestered or dysfunctional. This
has been demonstrated in mHr23b knockout (KO)
mice that show no impairment in NER [51]. Still,
mHr23b KO mice display impaired embryonic devel-
opment, retarded growth and facial dysmorphologies
that are not observed in mouse models deficient in
other NER genes [51], which suggests a second func-
tion of HR23B. Although HR23A and HR23B have
similar functions in DNA repair, they form distinct
interactions with various cellular factors, including
proteasomes, multi-ubiquitinated proteins and
stress-related factors [10].
Here, we set out to validate the aggregation of several pro-

teins that have been described to mis-localize or bind RNA
foci in C9FTD/ALS. Strikingly, we could not reproduce earl-
ier published pathology for Ran-GAP, ADARB2, Pur-alpha
and FMRP. The differences observed between our study and
previous publications can be explained by multiple factors.
First of all, we used post-mortem brain material that only
presents the end-stage of the disease, so changes in

Fig. 5 HR23B does not sequester its bindings partners into
inclusions. XPC, 20S and ataxin-3 stainings do not reveal any
differences between C9FTD patients and non-demented controls.
For NGly1, we observed less nuclei with perinuclear staining in
C9ORF72 FTD brains than in non-demented controls. All pictures are
from frontal cortex. All scale bars are 20 μm
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localization of proteins in early stages of the disease
can be missed. Also, the number of cells presenting
with stress granules varies a lot between subjects and
might be attributed to autolytic processes during hu-
man brain preservation, which can make it hard to
detect subtle differences. Secondly, this study focused
on FTD rather than ALS. This could especially be im-
portant for ADARB2, as one of the targets of ADAR
proteins is the Q/R site of the GluR2 AMPA receptor
[22]. Changes in ADARB2 localization could therefore
mostly affect ALS cases and may be missed in our
FTD cohort. Thirdly, pathology observed in cell cul-
ture and in vivo models could be due to overexpres-
sion of C9ORF72 RNA or DPRs in these models.
Changes in patient neurons with endogenous expres-
sion can be more subtle but still act disturbing over
time. Most model systems used so far do not include
haploinsufficiency, which can be a modifying factor
for cellular toxicity as well [41]. Finally, effects might
be missed due to our small cohort. For example, dif-
ferences in oddly-shaped nuclei in the Ran-GAP
staining might only become evident when quantifying
large number of cells. However, Saberi et al. also were
unable to confirm Ran-GAP pathology [35], which
strengthens our findings and illustrates the need for
validation studies in biomedical research. Even though
we did not observe any pathology of Ran-GAP,
ADARB2, FMRP and Pur-alpha, their levels could still
have a modifying effect on disease progression of
FTD, as has been shown in iPSC-derived neurons and
Drosophila models [7, 13, 50, 54].

Conclusion
In this study, we confirm HR23B aggregation and its impli-
cation in C9FTD/ALS. HR23B has an important function
in both the DNA damage response and the degradation of
proteins via the UPS, UPR and ERAD. Our results in hu-
man postmortem brain tissue suggests that especially the
degradation of proteins via ERAD may be involved in the
pathogenesis of ALS and FTD. The exact role and timing
of HR23B in disease onset and progression needs further
investigation, including its interaction with and possible
degradation of proteins implicated in neurodegenerative
disorders.
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Additional file 1: Table S3. Antibody information. (DOCX 16 kb)

Additional file 2: Table S1. Neuropathological scores of C9ORF72 FTD
patients. Neuronal loss score was based on hematoxylin and eosin (HE)
staining and pathological report and scored as absent (0), mild (1),
moderate (2) or severe (3). Pathological scores were based on the degree
of pathology as absent (0), rare (1), occasional (2), moderate (3), or
numerous (4). Brain areas: F = frontal cortex, T = temporal cortex, M =
motor cortex, H = hippocampus dentate gyrus, C = cerebellum. NCI =

neuronal cytoplasmic inclusion, NII = neuronal intranuclear inclusion, DNs
= dystrophic neurites. (DOCX 23 kb)

Additional file 3: Figure S1. Ran-GAP staining in C9FTD cases and non-
demented controls. Ran-GAP is predominantly localized to the nucleus
and nuclear membrane. Unevenly shaped nuclear membranes occur in
both C9ORF72 FTD cases (n = 5) and non-demented controls (n = 3). All
scale bars are 20 μm. (PDF 2202 kb)

Additional file 4: Figure S2. ADARB2 staining in C9FTD cases and non-
demented controls. A) Staining of ADARB2 in C9ORF72 FTD cases (n = 5)
and non-demented control (n = 3) post-mortem brain sections shows
some intranuclear inclusions in hippocampus CA and DG. All scale bars
are 20 μm B) Immunofluorescence staining of ADARB2 (red) and p62
(green) in hippocampal dentate gyrus reveals ADARB2 punctuated stain-
ing and some intranuclear inclusions in both C9ORF72 FTD cases (n = 5)
and non-demented controls (n = 3). Scale bars in fluorescent pictures are
10 μm. (PDF 2721 kb)

Additional file 5: Figure S5. HR23B pathology in different brain areas
of C9FTD cases. Staining of HR23B in several brain areas of C9FTD cases
and non-demented controls. Pathology burden was highest in cortices
(frontal, temporal and motor) and was mostly cytoplasmic (inclusions and
neuropils) and intranuclear (cateye). Hippocampus dentate gyrus (DG)
harbors perinuclear inclusions, and hippocampus cornu ammonis (CA)
had some cells with strong nuclear staining. Pathology was low in cere-
bellum granular layer with only some nuclear and perinuclear inclusions
and almost absent in cerebellum molecular layer. Our C9FTD cases did
not show HR23B pathology in spinal cord neurons. All scale bars are
20 μm (PDF 2260 kb)

Additional file 6: Figure S3. FMRP staining in C9FTD cases and non-
demented controls. FMRP staining does not reveal any differences between
C9ORF72 FTD cases (n = 5) and non-demented control (n = 3) post-mortem
brain sections. Occasional inclusions are found in the hippocampus dentate
gyrus in both C9FTD cases and controls. All scale bars are 20μm. (PDF 1883 kb)

Additional file 7 Figure S4 Pur-alpha staining in C9FTD cases and non-
demented controls. Pur-alpha staining reveals abundant stress granules in
both C9ORF72 FTD cases (n = 5) and non-demented controls (n = 3) post-
mortem brain sections. All scale bars are 20 μm. (PDF 1826 kb)

Additional file 8 Figure S6 Validation of HR23B pathology by a second
independent antibody. HR23B staining using Abcam antibody in C9ORF72
FTD cases (n = 5) and non-demented control (n = 3) post-mortem brain
sections. Staining pattern is consistent with HR23B GeneTex antibody
(see Figs. 1 and 2). All scale bars are 20 μm (PDF 1543 kb)

Additional file 9: Table S2. Co-localization of HR23B with DPRs/pTDP-
43/p62 differs between brain areas. The percentage is the amount of
HR23B inclusions also positive for other pathological hallmarks (not the
other way around). For example 11/153 for poly-GA in C9FTD patient 1
means that out of 153 HR23B inclusions, 11 were also positive forpoly-
GA, which is 7%. F = frontal cortex. H = hippocampus dentate gyrus. *1 =
All co-localizations are fibrils of poly-GP and HR23B in frontal cortex. Peri-
nuclear inclusions of poly-GP did not stain positive for HR23B. *2 = In total
2 poly-PA inclusions have been found in frontal cortex of 5 C9FTD pa-
tients, too less to quantify. We therefore state N/A = non-applicable in
this table. *3 = Non-demented cases had some p62 and some HR23B in-
clusions per person per section, which sometimes overlapped. No pTDP-
43 inclusions were found so no co-localization of pTDP-43 with HR23B in
non-demented cases. (DOCX 19 kb)

Additional file 10: Figure S7. Nucleotide excision repair is not affected
in C9ORF72 human fibroblasts. A) Dose-response curve for 4 healthy con-
trol human fibroblast lines (81E253, 86E1375, 06E0717 and 99E0774) and
4 C9ORF72 human fibroblast lines (13E634, 13E659, 17E0225, 17E0278)
and the NER deficient XP25RO human fibroblast line treated with increas-
ing dose of UV-C light (0–12 J/m2). B) Immunofluorescence staining
showing the recruitment of NER factors XPC, XPB, XPA, XPF and XPG to
local DNA damage (visualized by CPD antibody), induced by 60 J/m2
UV-C irradiation through a microporous filter. Fibroblast lines used for
pictures: 13E634, 13E659 and 81E253 C) Human fibroblasts lines were
treated with 16 J/m2 UV-C light and incubated with EdU for 1 h to
measure unscheduled DNA synthesis (UDS) as measure of DNA repair.
The NER-deficient XPC25RO cell line is shown as negative control. Ctrl 1–
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4 are lines 81E253, 86E1375, 06E0717 and 99E0774 in this order. C9 1–4
are lines 13E634, 13E659, 17E0225, 17E0278 in this order. (PDF 934 kb)
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